@ BEOSIN

Blockchain Security

Smart Contract Security Audit

V1.3

eRon Blockchain using bas framework services




Contents

Summary of audit results . - - - - - 1
1 Overview. . . - - - - . 2
1.1 PrOJECE OVEIVIEW «.uevireiierecuisesuessesessesessassestessssessessesaesssssesassessessessssssesssssarssssssasasasessessenssssssassssasessanss 2

1.2 ATAIE OVEIVIEW <.ttt et e et e ettt e e e e e et e e e e e eaee e e ensmsaeee e e s enamne e e e eamnnteseeseemnesaseeseeensennnnnens

2 Findings - ; ; ; ; ; e 3
A validator can vote MUITIPIE tITIES ......oouiiieriiie ettt be e erae i 4
Poorly designed cfor fUNCHON .......ccoiviuiiiieeeeiee ettt e eeen e 5
User funds will not be available for withdrawal ..........ccooooeniiiiiniiiiee 6
The slashValidator function is not rigorously judged..........ccccoiiiiiiiiiiiiniiciic e 8

Poorly designed undelegate function.............cccoveueeieiieniceieiece e e e 9

Poorly designed delegateTo fUNCHON ...........cociiiuiiiiciiie e e 10

M S S WIS oot oo et s asannssnssasnsasnsn s s e BMubha e manesusca sobasabasstsasnsans sassranssesasanns snasiafihebes 11

Poorly designed c/aim fUNCHON ........ccvieveieieeii e s ens 12

3 Appendix... . - - - . - . 13
3.1 Vulnerability Assessment Metrics and Status in Smart COntracts ............ccceveeeeeiiiciieieiesseceeceneeenes 13

3.2 AUGIt CAIEEOTIES ... vttt sttt e e e e sse st et e b e sm s eecae e se e et eaes e eeee e et et eh e ea et easensnae e s 15

3.3 Disclaimer....... LB ECYC TR i RO B TS AL L 17




Summary of audit results

After auditing, 1 Critical-risk, 1 High-risk, 1 Medium-risk and 5 Info items were identified in the Ankr
bas project. Specific audit details will be presented in the Findings section. Users should pay attention to the

following aspects when interacting with this project:

Security vulnerability

6
3
5
4
3
2
1 1 1

1

] [] “ ]
0

Critical High Medium Low Info

M Critical B High B Medium B Low ¥ Info

“Notes:

® Risk Description:

1. If contract use the latest openzeppelin-contracts, there may be previous problems. Because the Governor
in the latest openzeppelin-contracts contract has added a castVote, it will cause the vote to still be

manipulated. Please make sure to use the correct openzeppelin version.
® Project Description:
1. Business overview

The Staking contract implements the Validator registration function and the user stake function. Anyone
can register as a Validator by pledging the corresponding funds through the Staking contract, and after
registration, the Validator can only become a Validator if the Governance contract is voted on. The
Governance contract can be initiated by the Validator address and must have more than two-thirds of the
votes before the proposal can succeed; the RuntimeUpgrade contract is used to upgrade the system

contract.




1 Overview

1.1 Project Overview

Project Name

eRon Project using bas framework services

Platform

https://*.eronscan.com

Staking.sol

466e8bf3e88fb7f828bb89fb2b7c21cdedcabd042215a8daal dffable51
2a6¢8

ad2fdf8565190b1b9972fe91fabfade044c7f783a5b042338166316330d
20183

StakingPool.sol

1leca905566e42760e6¢cedcb0e0d9d6ad35e94b31d5dd8a857afelcl
4cef70bd

File Hash
(SHA256)

Injector.sol

37a7d2351fa0e9e42907231de3a54651be952c045c45562e846eblb
2787902bf

RuntimeUpgrade.sol

5b9e85557561c1895¢55b1alb60d8b15112b1fe98641f18c7d9dbSc
0dab2050f

Governance.sol

5¢76£c9e0b25d805bc0045a3ecbde8da89b577a243886d99f35a4¢86
37b3e234

2caf68fedfSe6eadl5f496a8d06dc5c631003e7bcb8672dd497¢55745
550e497

1.2 Audit Overview

Update report time: April 26

Audit methods: Formal Verification, Static Analysis, Typical Case Testing and Manual Review.

Audit team: Beosin Technology Co. Ltd.




2 Findings

Index Risk description Severity level Status
1 A validator can vote multiple times Critical Fixed
2 Poorly designed ctor function High Fixed
3 User funds will not be available for withdrawal Low Fixed
4 The slashValidator function is not rigorously judged Info Fixed
5 Poorly designed undelegate function Info Fixed
6 Poorly designed delegateTo function Info Fixed
7 Missing events Info Fixed
8 Poorly designed c/aim function Info Fixed




@ BEQSIN

Blockch@in Security

- A validator can vote multiple times

Severity Level

Critical

Type Business Security

Lines Governance.sol#

Description In the Governance contract, only the ValidatorOwner address can vote, but in the
Staking contract, the ValidatorOwner address can be modified through the
changeValidatorOwner function, and then you can still vote.

Recommendations It is recommended to use validator to count the votes.

Status Fixed

WINCISE proposalld, address acc
orhddress « _stakingContract.get
astvote{proposalld, valldatorsdd

NTE SuppOrt, String memory reason) Internal virtual override onlyValidstorOwner({sccount) returns (wint256) {
orByOuner{account ) ;

Figure 1 Source code of _castVote function (Fixed)




BEOSIN

Blockchain Security

Poorly designed cfor function

Severity Level High

Type Business Security

Lines Staking.sol#L122
The ctor function in the staking contract should not specify initialStakes, because this

Description
function does not transfer the corresponding funds. If the validator has other users

participating in the stake, it will cause the validator to withdraw the stake funds of

other users.
118 )
119 function ctor(address[] calldata validators, uwint258[] calldat wintlé commissionRate) external whenWotInitialized {
128 require(initialStakes.length == walidators.length);
121 for (uint2S6 i - @; & < validators, length; i+s) {
122 _addvalidator(validators[i], validators[i], validatorStatus.Active, commissionRate,
123 %
124 1
125
Figure 2 Source code of ctor function
4as

function _addval . address . vali status, uintls comsisslon®ate, ..mussulns-t sincaEpoch) imternal {

validator commission rate
require{comissiondate s« COMMISSION_RATE_WIN_VALUE §E cowsissionfate <s COMMISSION_RATE_PAX_VALUE, “Staking: bed commission rate”);
fi INLE validator Safault parass
validator memory validatoe = _validatorsMas[valldatorAddress)
require(_validatorsMap[validatoraddress].status == ValldatorStatus.WotFound, “Staking: validator already exist®);
validator.validstoraddress - validatoraddress;
valldator sunerkadngis = valldatorunes;
validator.status - status;
validator. changedAt = sinceEpoch;
_validatorsMap[val idatoraddress] = validator;
14 save validator cuner
raquiref_val! [valia: 2] ==
_validatorouners|validatoriwner] = valiatorddress;
{4 add new validstor to array
If (status == valldstorStatus.fecrive) {

_actl; 15t push{va: )

}. "Stakcieg: cimar alraady in usa™):

## push initial validator snapshot at zero epoch with default parass

_validatarsnapshots[valldatoraddress][sinceépoch] = ValidatorSnspshot (8, ulntil2{initislStake / BALANCE_COMPACT_PRECISION), #, cownissiontate);
/) delegate Initial ka to valldator cundr

validatorDelegation storage delegation = _wal 1 Cwnar ] ;

require] del length =- 8, “Staking: del queve is not empty");

delegation, delegsteQueve. push{Delegst ionDsDelegate{uint112{initialstake | BALANCE_COMPACT_FRECISION), sinceEpoch));|
7 emlt event

amdt Vall H s , uintB{status), comsdssionRate);

Figure 3 Source code of _addValidator function (Fixed)

Recommendations It is recommended to set initialStakes to zero.

Status Fixed.

118

110 function ctor{address[] calldata validators, uint256[] calldata initialStakes, ulnti6 commlssionRate) external whenNotInitialized {
128 require(initialStakes.length -- validators.length);

in uintis6 totalStakes - @;

122 for (uint256 1 = @; 1 < validators.length; i++) {

123 _addval ldator(validators[1], validators[i], ValidatorStatus Active, commissionRate, initialStakes[i], @);
124 totalStakes +- initialStakes[i];

125

126 require(asdress({this).balance == totalStakes, "Stakinmg: initial stake balance mismatch™);

127 1

138

Figure 4 Source code of ctor function (Fixed)




BEOSIN

Blockchain Security

User funds will not be available for withdrawal

Severity Level Low

Type Business Security

Lines Staking.sol#L.313, 535-544
After the validator is deleted through governance, if the validator has stake funds, the
user will not be able to withdraw the funds staked on the validator.

Description

5135

514 function removeValidator(address account) external onlyFromGovernance virtual override {
515 _removeValidator{account);

516 }

517

518 function _removevalidatorfromictivelist(address validatorfddress) internal {

519 £ find index of validator in validator set

528 int256 indexof = - 1;

521 for (uint2sé i = @; i < _activevalidatorsList.length; i++) {

522 if (_activevalidatorsList[i] != validatordddress) continue;

523 index0f = int2s6(1);

Si4 break;

525 ¥

526 ff remove validator from array (since we remove only active it might not exist in the list)
527 if (index0f »- @) {

528 if (_activevalidatorsList.length > 1 && uint256(index0f) |= _activeValidatorslist.length - 1) {
539 _activeValidatorsList[uint256(index0f)] - _activeValidatorsList[_activevalidatorsiist.length - 1];
538 }

531 _activevalidatorsiist.pop();

532 }

533 }

534

¥ 14 function _removevalidator(address account) internal {

536 validator memory validator = _walidatorsMap[account];

527 require(validator.status !- ValidatorStatus.MotFound, "Staking: validator not found™);
538 // remove valldator from active list If exists

539 _removeValidatorFromActivelist{account);

548 { remove from validators map

541 delete _validatorOwners[validator.owneraddress];

542 |dele'te _validatorsMap[account]; |

543 /{ emit event about it

S4d emit validatorfiemoved(account);

545 3

546

Figure 5 Source code of _removelValidator function (Fixed)

- function wefalogataFroa(addness teDelagatee, asdesss Froavalldatoe, uintlSe smcent) Intarnal |
// cheek minimm delegate srount

a - # _gatHinst {) 8 amout 1= @, “Staking: amount 55 too low™);
require(ssount § BALANCE_COMPACT_PRECISION «= 9, “Staking: ssoust have a remainder”);
/7 make sure validator exists at laast
Nalidater semory validator alidatorskap] fromvalidator] -
q .status fe -MotFound, “Staking: valldatar net fnw'}_‘]
e T
{1 Lets upgrade next snapshot parameters:
gihat for the nast spach sfter cue

otk
epoch for this validator
lght changs

walidatorSnapshot #validats 1

ol g »e win J BALANCE_COMPACT_PRECISION), ™
validatorSnapshot . totalDelegated = uintl12(amount / BALAWCE COWPACT_FRECISION};
_valldatersMap] Froaval Ldutee] = valldatee;

/1 4f last pending delegate has the same next epo

aking: lmsufflclant balance™ )i

en its safe to just imcrease total

atakad amon ause It can"t affect current Set, But otherwise wo must Craate
new record in delegation guews with the lest epoch (delegations are ordered by epoch)
Walidab storage - _valid Fromvalidator] [ToDelagator];
require(delegetion. delegatequeue. langth > 8, “Staking: delegation quews is septy™);
Oslagate storaga todp = delegation. 'l leagth - 1];
cquire( t se ul T/ BALMICE_DOMPACT_PRECISION), “Staking: insufficient balssce™);

uintil} nawtDelogatadAsoust - rocontDelegatedp. ancust - uintill{asount / BALANCE COMPACT _PRECISION);
1 if (recentOelegatedp. epoch »= beforefpoch) {
2 £ decrease total delegated amount for the next epoch
m te .
EETI {
¥ / thare §5 no panding delegstions, so lets creste the new coe with The new secunt
336 delegation. push{Delegat poch, amount 135
W
333 {1 create new undelegate queue operation with soft lock
a0 sl puish(BeL L : ulatas T [ BALMKCE_COMPACT PRECISION), spech : beforefpech & _chalsConFigtentract . gotiadalogatabartod])}));
a8 {f ewit event with the next epoch nusber
41 salt Unde , . amOunt, poch) ;
a2
43

Figure 6 Source code of _undelegateFrom function (Fixed)

Recommendations It is recommended to remove the validator after the funds in the validator have been

withdrawn.




Status

Fixed.

functisn _undelegatefroa{addreis toDelegator, address froevalidates, ulntiSs amount) isternal {
¢/ chack minimm delegate amount
require(asount = _chainConfigContract,getiinstakingdmount() & amount 1= 8, “Staking: asount is too low");
reguire (amount ¥ BALANCE_COMPACT PRECISION == @, “Staking: smcent have & resalnder™);
47 maks sure validator exists at least
walidstor memory validator - _validstorsmap(fromvalidator];
uintéd beforefpesh = _nextipech();
4/ Lets upgrade mext snapshot parameters:
4f # find snapshot for the mext epoch after currest block
JF & Incroase total delegated asount §n the next spech for this valldatee
#1 & re.zave validator becasse last affectod opoch might chasge
validatorSnapshot storage validatorSnapshot = _towchwalidetorsnapshot(validator, beforeEpoch);
o ph - / BALANCE_COPPACT_PRECISICH), "Stakieg: Insufficlent balasca™);
validatorSnapshot. totalDelegated <= uintiil{asount / BALAMCE COMPACT_PRECISION);
_validatorsMap[ frosvalidetor] = validetor;
FF5F Last pending delegate Mas the cams next epech than Its safe to Just ncresss tetal
¢/ staked amount because it can't affect current walldator set, but otherwise we must create
#f mew record im delegation queue with the last epoch (delegstions are ordered by epoch)

STOrage K iH
regul del length » 8, “Staking: quese is empty™);
DelegationOpDelegste storsge recentDelegatedp - delegation.delag dal lengeh - 11;
reguira amcunt »- ¢ BALANCE_COPPACT_PRECISION), "Staking: Lnsufficlent balince
uint112 - amcunt - uintll2(amount / BALAMCE_COMPACT PRECISION);
if poch e
§f dacrease total delegeted asount for The meat epoch
ansunt -
}else {
/1 there it me pending delegations, 5o 1eEc create the méw one with tha new ameust
1 1 epoch + amoust : 111
T
J7 €reato now uedelogate guue operatic with coft lock
push{De et # BALANCE_COMPACT_PRECISION), epoch : beforeEpoch + _chainconfigContract.getUndelegatePeriod()})
{f emit event with the next epoch nusber
it . ', amount, poch )

Figure 7 Source code of _undelegateFrom function (Fixed)




BEOSIN

Blockch@in Security

The _slashValidator function is not rigorously judged

Severity Level Info

Type Business Security

Lines Staking.sol#L.741,743
In the slashValidator function, "validator.status != ValidatorStatus.NotFound" is judged,

Description
because "make sure validator was active" 1s also written in the comment. So the function here

should judge validator.status == ValidatorStatus. Active.

f39

748 function slashvalidator(address validatorAddress) internal {

741 P.-" make sure validator was active]

742 r_Memory Wi Pa g r raddress];

743 require(validator.status !- ValidatorStatus.NotFound, “Staking: validator not found™);
744 uintéd epoch = _currentEpoch();

745 // increase slashes for current epoch

746 validatorSnapshot storage currentSnapshot = _touchvalidatorSnapshot(validator, epoch);
747 uint32 slashesCount = currentSnapshot.slashesCount + 1;

748 currentSnapshot.slashesCount = slashesCount;

749 /f validator state might change, lets update it

756 _validatorsMap[validatorAddress] - validator;

751 ff if validator has a lot of misses then put it in jail for 1 week (if epoch is 1 day)
752 v if (slashesCount == _chainConfigContract.getFelonyThreshold()) {

753 validator.jailedBefore = _currentEpoch() + _chainConfigContract.getValidatorJailEpochLength();
754 validator.status = ValidatorStatus.Jail;

755 _removeValidatorFromactivelList(validatorAddress);

756 _validatorsMap[validatoraddress] = validator;

757 emit Validatorlailed(validatoraddress, epach);

758 }

759 /F emit event

768 emit ValidatorSlashed(validatorAddress, slashesCount, epoch);

761 3

762}

763

Figure 8 Source code of _slashValidator function (Fixed)

Recommendations It is recommended to determine the status of the validator as active.

Status Partially Fixed. Project party description: Validator can be slashed even if this validator is
already in jail because epoch might be still active where this validator is in the active validator
set. They’ve changed the misleading comment for this line.

ra8

Ta1 ~ function _slashvalidator{address validavoraddress) internal {

Taz #{ make sure validator exists

743 Validator memory validator - _validatorsMap[validatorAddress];

Ta4 require(validator.status != ValidatorStatus.NotFound, “Staking: walidator not found™);
745 uinté4 epoch = _currentEpoch();

T46 £ increase slashes for current epoch

TAT validatorSnapshot storage cur pshot = _touchWalidatorSnapshot{validator, epoch);
Tag uint32 slashesCount = currentSnapshot.slashesCount + 1;

T40 currentSnapshot.slashesCount - slashesCount;

758 #{ validator state might change, lets update it

751 _validatorsMap[validatorfddress] = validator;

752 £ if validator has a lot of misses then put it in jail for 1 week (if epoch is 1 day)
753 if (slashesCount == _chainConfigContract.getFelonyThreshold()) {

754 validator.jailedBefore = _currentEpoch() + _chainConfigContract.getvalidatorlailEpochLength();
755 validator.status = ValidatorStatus.lail;

TE6 _removeValidatorFromictivel st (validatoraddress);

757 _validatorsMap[validatoraddress] = validator;

758 emit Validatorlailed(validatoraddress, epoch);

759 1

768 #f emit event

el emit Validatorslashed{validatorAddress, slashesCount, epoch);

762 ¥

763 }

Figure 9 Source code of slashValidator function (Fixed)




@ BEQSIN

Blockchain Security

- Poorly designed undelegate function

Severity Level Info
Type Business Security
Lines Staking.sol#L.216
Description In the undelegate function, there is no operation on msg.value.
£as i
215
216 function undelegate(address validatorAddress, uint256 amnunt) external override {
217 _undelegateFrom(msg.sender, validatorAddress, amount);
218 }
219

Figure 10 Source code of undelegate function (Fixed)

Recommendations It is recommended to delete the payable.

Status Fixed.

215

216 v function undelegate(address validatorAddress, uint256 amount) external override {
217 _undelegateFrom(msg.sender, validatorAddress, amount);

218 ¥

219

Figure 11 Source code of undelegate function (Fixed)




BEQSIN

Blockch@in Security

Poorly designed _delegateTo function

Severity Level Info

Type Business Security

Lines Staking.sol#L277
In the delegateTo function of StakingPool, it is judged as "validator.status !=
ValidatorStatus.NotFound", which means that when the validator's status is Pending

Description

or Jail, users can also stake.

78 function _delegateTo{address fronDelegator, address tovalidator, uint256 amount) intermal

7 £f check is minimm delegate amount

e require(amount »= _chalnConfiglontract. getMinstakingimount () &8 ascunt l= @, "Staking: amount Ls Too lew™);
73 require(anount ¥ BALANCE_COMPACT_PRECISION -- @, “Staking: amaunt have a remaindar®});

74 £f make sure amount If greater than min staking amount

75 /¢ make sure validator exists at least

e Walidator memcry wvalidator - _validatorstap[tovalidator];

77 require(validstor. status 1= ValldatorStatus.MotFound, “Staking: validator mot found™)}

278 uintBa atEpoch = _nextEpoch();

79 {# Lets upgrade next sn t parameters

228 ind snapshot for fter current block

281 incresse total delegs! mount. In the next epoch for this validator

282 {# + re-zawe walidator because last affected cpoch might chango

283 validatorSnapshot storage validatorSnapshot = _towchvalidstorSnapshot{validator, atEpoch);

84 valigdatorsnapshot. totallelegsted += ulntlil(amount / BALANCE_COMPACT_PRECISION);

235 _validatorsMap[tovalidator] - validator;

286 £ if last perding delegate has The same next epoch then i1ts safe to just Increase total

287 ! taked amount because it can’t affect current walidator set, but otherwise we must create

288 {# new record in delegation quewe with the last epach (delegations are ordered by epoch)

230 val 1 lon storage del - _val 10 4 H

268 if (delegation.delsgateQueue. length » 8) |

291 DelegationOplslegate storage recentDelegatedp = delsgation.delegateQueus|delegation. delegatequeue. length - 1];
252 ¢/ if we already have pending snapshot for the next epoch then just increase new amount,

293 /i otherwlise create mext pending snapshot. (thh It can't be greater, but what we can do here instesd?)
294 if (recentDelegatedp.epoch »= atEpoch) [

205 recentDelegatedp . amount <= Wint112(ameunt / BALANCE_COMPACT_PRECISION);

296 ~ } else {

287 delegation. delegatefueus. push{Del sgationpbelegate{ {&poch : atEpoch, amount @ recentDelsgatsOp.smount + ulntll12(smourt / BALANCE COMPACT PRECISION}) );
208

299 v } else {

380 /f there i5 no any delegations at al, lets create the First one

EL delegation.delegateQueve. push(Delegat ionOpDelegate({epoch : atEpach, amount : wintllZ({amount / BALANMCE_CDMPACT_PRECISION)})):
ELH 3

EL-H ff emit avent with the next epoch

304 e=it Delegated(tovalidater, froaDelegator, asount, atEpoch}i]

385 ]

Figure 12 Source code of preMint function (Fixed)

Recommendations It is recommended that when the state of the Validator is active before it can be
staked.

Status Acknowledged. Project party description: They can’t limit validators from being elected even
if they are in jail or not active. Stakers who delegate money to jailed or inactive validators will
be punished because they won’t gain any rewards for it. But the validator owner might want to
increase the total staked amount for his validator just to increase its position in the active

validator list and be prepared for validating blocks right after the jail period ends.

10



BEOQOSIN

Blockchain Security

- Missing events

Severity Level Info

Type Business Security

Lines Staking.sol#L551-569
The _disableValidator and _activateValidator functions in the Staking contract lack

Description
the corresponding event triggers,

a3m
551 function _activateValidator(address walidatorAddress) internal {

552 validater memory validator - _validatorsMap[validatoraddress];

553 require(_validatorsMap[validatorAddress].status == ValidatorStatus.Pending, “Staking: not pending validater");
554 _activevalidatorsList.push(validatoraddress);

555 validator.status = ValidatorStatus.Active;

556 _validatorsMap[validatordddress] = validator;

557 }

558

559 function disablevalidator({address validator) external onlyFromGovernance virtual override {

568 _disableValidator(validator);

561 }

562

563 v function _disablevValidator(address validatorAddress) internal {

564 validater memory validator = _validatorsMap[validatorAddress];

565 require(_validatorsMap[validatordddress].status == ValidatorStatus.Active, "Staking: not active validator™);
566 _removeValidatorFromictivelist (validatorAddress);

567 validator.status - ValidatorStatus.Pending;

568 _validatorsMap[validatoraddress] = validator;

569 }

Figure 13 Source code of _disableValidator& _activateValidator functions (Fixed)

Recommendations It is recommended to add their event triggers.

Status Fixed.

551 function _activateValidator(address validatorAddress) internal {

552 validator memory validator = _validatorsMap[validaterfddress];

553 require(_validatorsMap[validatorAddress].status -- ValidatorStatus.Pending, “Staking: not pending validator™);
554 _activevalidatorsList.push({validatoraddress);

555 validator.status = ValidatorStatus.Active;

556 _valldatorsMap[validatoraddress] - validater;

557 ValidatorSnapshot storage smapshot = _touchValidatorSnapshot(validator, _nextEpoch());

553 enmit ValidatorModified(validatorAddress, valldator.ownerAddress, ulnt8(validator.status), snapshot.commissionRate);
559 1

568

561 ~ function disablevalidator({address validator) external onlyFromGowvernance virtual override {

562 _disablevalidator(validator);

563 3}

564

565 w function _disablevalidator(address validatorfddress) internal {

566 Validator memory validator = _validatorsMap[validatorfddress];

567 require(_valldatorsMap[validatoraddress].status == ValldatorStatus.Active, "Staking: not active wvalidator");
568 _removeValidatorFromictivelist(validatoraddress);

569 valldator.status = ValidatorStatus.Pending;

578 _validatorsMap[validatorAddress] - validator;

571 validatorSnapshot storage snapshot = _touchvalidatorSnapshot(validator, _nextEpach{)):

572 emit ValidatorModified{validatoriddress, validator.ownerdddress, uintB(validator.status), snapshot.commissionRate);
573 3}

Figure 14 Source code of _disableValidator& activateValidator functions (Fixed)

11



BEOSIN

Blockchain Security

Poorly designed claim function

Severity Level Info

Type Business Security

Lines StakingPool.sol#L166

Description When the user does not cancel the stake, the pendingUnstake.epoch at this time is

equal to zero, then the use of greater than or equal to zero here is constant.

1o

161 function claim(address validator) external advanceStakingRewards(validator) override {
162 PendingUnstake memory pendingUnstake = _pendingUnstakes[validator][msg.sender];
163 uint256 amount = pendingUnstake.amount;

164 uint256 shares = pendingUnstake.shares;

165 // make sure user have pending unstake

166 require(pendingUnstake.epoch »= 8, "StakingPool: nothing to claim"); |

167 require(pendingUnstake.epoch <= _stakingContract.currentEpoch(), "StakingPool: not ready”)};
168 /f updates shares and validator pool params

169 _stakerShares[validator][msg.sender] -= shares;

170 validatorPool memory validatorPool = _getValidatorPool(validator);

171 validatorPool.sharesSupply -= shares;

172 validatorPool.totalStakedAmount -= amount;

173 validatorPool.pendingUnstake -= amount;

174 _validatorPools[validator] = validatorPool;

175 /f remove pending claim

176 delete _pendingUnstakes[validator][msg.sender];

177 /f its safe to use call here (state is clear)

178 require(address(this).balance >= amount, "StakingPool: not enough balance™);
179 payable(address(msg.sender)).transfer{amount);

186 /f emit event

181 emit Claim(validator, msg.sender, amount);

182 }

403

Figure 15 Source code of claim function (Fixed)

Recommendations It is recommended to modify it to be greater than zero.

Status Fixed.
161 function claim{address validator) external advanceStakingRewards(validator) override {
162 PendingUnstake memory pendingUnstake = _pendingUnstakes[validator][msg.sender];
163 uint256 amount = pendingUnstake.amount;
164 uint256 shares = pendingUnstake.shares;
165 // make sure user have pending unstake
166 require(pendingUnstake.epoch » @, "StakingPool: nothing to claim"};
167 require(pendingUnstake.epoch <= _stakingContract.currentEpoch(), "StakingPool: not ready");
168 {{ updates shares and validator pool params
169 _stakershares[validator][msg.sender] -= sharas;
178 vValidatorPool memory validatorPool - _getWalidatorPool(validator);
171 validatorPool.sharesSupply -= shares;
172 validatorPool.totalStakedAmount -= amgunt;
173 validatorPool.pendingUnstake -= amount;
174 _validatorPools[validator] = validatorpool;
175 // remove pending claim
176 delete _pendingUnstakes[validator][msg.sender];
177 {// its safe to use call here (state is clear)
178 require(address{this).balance »= amount, “StakingPool: not enough balance”);
179 payable{address{msg.sender)).transfer{amount);
180 £ emit event
181 emit Claim{validator, msg.sender, amount);
182 }
182
184 receive() external payable {
185 require(address{msg.sender) == address(_stakingContract));
186 }
187 }

Figure 16 Source code of c/aim function (Fixed)

12



3 Appendix

3.1 Vulnerability Assessment Metrics and Status in Smart Contracts

3.1.1 Metrics

In order to objectively assess the severity level of vulnerabilities in blockchain systems, this report
provides detailed assessment metrics for security vulnerabilities in smart contracts with reference to

CVSS 3.1 (Common Vulnerability Scoring System Ver 3.1).

According to the severity level of vulnerability, the vulnerabilities are classified into four levels:
"critical", "high", "medium" and "low". It mainly relies on the degree of impact and likelihood of
exploitation of the vulnerability, supplemented by other comprehensive factors to determine of the

severity level.

Likelihomllmpaa Severe High Medium Low
Probable Critical High Low
Possible High High Low
Unlikely Low Info

Rare Low Low Info Info

3.1.2 Degree of impact

® Severe

Severe impact generally refers to the vulnerability can have a serious impact on the confidentiality,
integrity, availability of smart contracts or their economic model, which can cause substantial
economic losses to the contract business system, large-scale data disruption, loss of authority
management, failure of key functions, loss of credibility, or indirectly affect the operation of other
smart contracts associated with it and cause substantial losses, as well as other severe and mostly

irreversible harm.
® High

High impact generally refers to the vulnerability can have a relatively serious impact on the
confidentiality, integrity, availability of the smart contract or its economic model, which can cause a
greater economic loss, local functional unavailability, loss of credibility and other impact to the

contract business system.




® Medium

Medium impact generally refers to the vulnerability can have a relatively minor impact on the
confidentiality, integrity, availability of the smart contract or its economic model, which can cause a
small amount of economic loss to the contract business system, individual business unavailability

and other impact.
® Low

Low impact generally refers to the vulnerability can have a minor impact on the smart contract,

which can pose certain security threat to the contract business system and needs to be improved.

3.1.4 Likelihood of Exploitation

® Probable

Probable likelihood generally means that the cost required to exploit the vulnerability is low, with no

special exploitation threshold, and the vulnerability can be triggered consistently.
® Possible

Possible likelihood generally means that exploiting such vulnerability requires a certain cost, or there

are certain conditions for exploitation, and the vulnerability is not easily and consistently triggered.
® Unlikely

Unlikely likelihood generally means that the vulnerability requires a high cost, or the exploitation

conditions are very demanding and the vulnerability is highly difficult to trigger.
® Rare

Rare likelihood generally means that the vulnerability requires an extremely high cost or the

conditions for exploitation are extremely difficult to achieve.

3.1.5 Fix Results Status

Status Description

Fixed The project party fully fixes a vulnerability.

Partially Fixed The project party did not fully fix the issue, but only mitigated the issue.

Acknowledged The project party confirms and chooses to ignore the issue.




3.2 Audit Categories

No. Categories

Subitems

1 Coding Conventions

Compiler Version Security

Deprecated Items

Redundant Code

require/assert Usage

Gas Consumption

2 General Vulnerability

Integer Overflow/Underflow

Reentrancy

Pseudo-random Number Generator (PRNG)

Transaction-Ordering Dependence

DoS (Denial of Service)

Function Call Permissions

call/delegatecall Security

Returned Value Security

tx.origin Usage

Replay Attack

Overriding Variables

Third-party protocol interface consistency

3 Business Security

Business Logics

Business Implementations

Manipulable token price

Centralized asset control

Asset tradability

Arbitrage attack

Beosin classified the security issues of smart contracts into three categories: Coding Conventions, General

Vulnerability, Business Security. Their specific definitions are as follows:

® Coding Conventions

Audit whether smart contracts follow recommended language security coding practices. For example,

smart contracts developed in Solidity language should fix the compiler version and do not use

deprecated keywords.
®  General Vulnerability




General Vulnerability include some common vulnerabilities that may appear in smart contract
projects. These vulnerabilities are mainly related to the characteristics of the smart contract itself,
such as integer overflow/underflow and denial of service attacks.

® Business Security

Business security is mainly related to some issues related to the business realized by each project,
and has a relatively strong pertinence. For example, whether the lock-up plan in the code match the

white paper, or the flash loan attack caused by the incorrect setting of the price acquisition oracle.

*Note that the project may suffer stake losses due to the integrated third-party protocol. This is not something Beosin can control.

Business security requires the participation of the project party. The project party and users need to stay vigilant at all times.

16




3.3 Disclaimer

The Audit Report issued by Beosin is related to the services agreed in the relevant service agreement. The
Project Party or the Served Party (hereinafter referred to as the "Served Party") can only be used within the
conditions and scope agreed in the service agreement. Other third parties shall not transmit, disclose, quote,

rely on or tamper with the Audit Report issued for any purpose.

The Audit Report issued by Beosin is made solely for the code, and any description, expression or wording
contained therein shall not be interpreted as affirmation or confirmation of the project, nor shall any warranty
or guarantee be given as to the absolute flawlessness of the code analyzed, the code team, the business model

or legal compliance.

The Audit Report issued by Beosin is only based on the code provided by the Served Party and the technology
currently available to Beosin. However, due to the technical limitations of any organization, and in the event
that the code provided by the Served Party is missing information, tampered with, deleted, hidden or
subsequently altered, the audit report may still fail to fully enumerate all the risks.

The Audit Report issued by Beosin in no way provides investment advice on any project, nor should it be
utilized as investment suggestions of any type. This report represents an extensive evaluation process designed

to help our customers improve code quality while mitigating the high risks in Blockchain.







